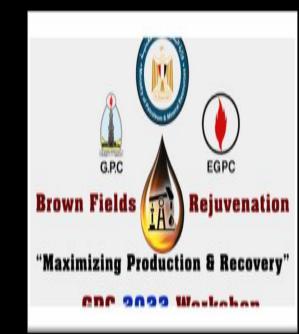


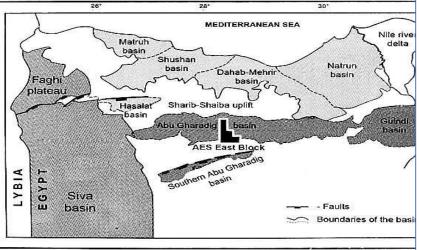
GPC Workshop 2022

Nanoparticle - Based Drilling Fluids Technology, Solved Depleted Reservoir Drilling Challenges, Optimized Production Zones and Minimized Pay Zones Damage.


By: EMEC TEAM

Youssry Abd El-Aziz, Mahmoud Kheir, Helal ElAgamy, Ayman Alzahary,

Author's Name	: Youssry Abdel-Aziz Mohamed (Main Author)
Job Title	: Project, Technical Manager
Company Name	: EMEC
Address	: Plot No. 196, New Cairo, 11835 , Egypt
Phone	: +201001613946
Fax	: +20226732920
Email	: youssryabdelaziz@emec.com.eg


Presentation Agenda

- GOS, Western Desert Basin Overview,
- Drilling Challenges & GOS Field Drilling Challenges,
- Solution, Why Nanoparticle Based Drilling Fluids Technology ?
- Wellbore Strengthening Software Models
 Drilling Solutions & (BPOT)
- Lab Testing Experimental Analysis
 - O Pilot Test Study,
 - **O** (PPA) Test Procedures,
 - **O** Testing of Fully Formulated Mud Systems

Closing Remarks / Conclusion

GOS / Western Desert Basin Overview

Gulf of Suez basin is located between the Eastern Desert and Sinai.

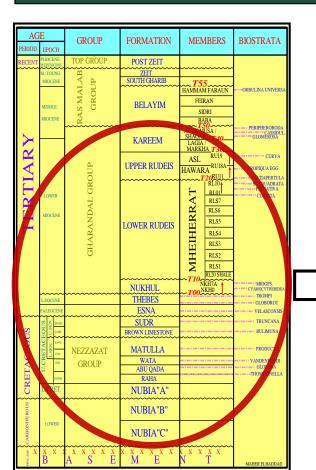
The Western Desert located in West of Nile Delta, Egypt,

The most prospective crud oil province in Egypt is in the GOS and W/D Basin. Western Desert Basin consists of a few extensional coastal rift-basins.

The structurally complex area of the Gulf of Suez is dominated by normal faults and tilted fault blocks

Drilling Challenges

On the other hand, invasion of drilling fluids to permeable reservoir formations causes different challenges including:


- Increase in water saturation.
- Fine migration problems.
- Complicated fluid management.
- Severely impair production.
- Increase Rig time, Increase in Operation Cost.
- Significant Non-Productive Time (NPT)
- Increase in Treatments Costs to Restore the Initial Condition of the Reservoir Fm.

The challenge for designing a Nanoparticle Based Drilling Fluids Technology for drilling success through depleted reservoir Fm or through problematic formation consisting of high-pressured shales interval and low permeability Sandstone in the Gulf of Suez (Egypt) or in Western Desert Egypt is combating with the following:

- Wellbore instability.
- Mechanical Shale Sloughing & Hole Back-off.
- High Pressured Zone and Sub-Pressured Sands.
- Gas Readings.
- Formation losses & Differential Sticking Problems against Depleted Sands Fm.
- Planned ECD while cementing 5" or 7" liner found to be > fracture gradient of depleted Reservoir Production zone.

GOS Field Drilling Challenges

□ The drilling team was assigned a challenging wells in different Fields in the GOS involving in the Kareem, Rudies, Mheherrat, Nezzazat Group (High pressure) and Nubia Formation (low pressure). This section is composed mainly of a highly Reactive Shale, Limestone, Marl, Chirt, Depleted Sand Fm.

Offset wells in this area experienced differential sticking problems due to depleted sands with mechanical shale sloughing, leading to wellbore instability issues with high differential pressure.

In Other offset wells the majority of the problems were tight hole, hole pack off, stuck pipe and lost circulation and mostly observed while Drilling, POOH or RIH penetrating this challenged Fm. However, these Formation are directly above Matullah or Nubia Reservoir Sand Fm.

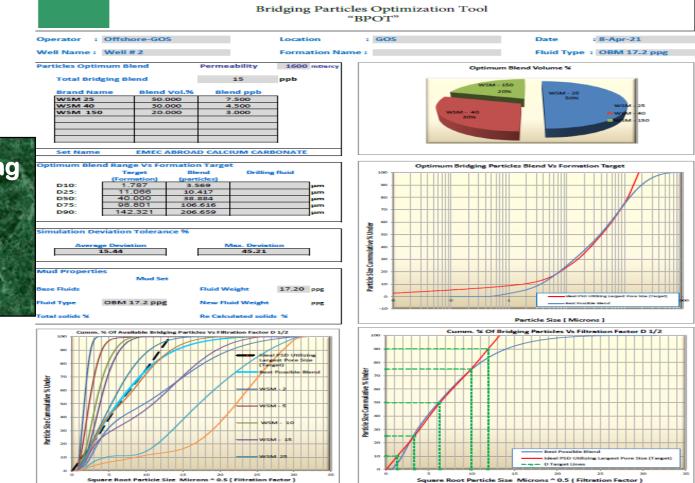
Solution; Why Nanoparticle Based Drilling Fluids Technology ?

- The newly designed Nanoparticle Based Drilling Fluids Technology incorporated in the fluid system formulation aided by Bridging Particles Optimization Tool (BPOT) customized to solve such drilling challenges and engineered to control fluid invasion of drilling fluid into reservoir.
- "BPOT" Optimizes the "PSD" of reservoir drilling fluids, improves leak-off control, and minimizes formation damage from solids invasion thereby increasing well productivity.
- NSLP/WSM incorporated in OBM Formulation Capable of forming a continues and integrate mud cake with low permeability and low porosity.
- This innovative Solution saves operator significant time and money when compared to problematic offset wells

Select the optimum blend of sized "WSM" as bridging agents.

Design Criteria based on Fm permeability or pore throat size.

Determines the ideal Particle Size Distribution PSD of "WSM" required to seal off Fm pore matrix.


Permeability Plugging Apparatus Lab Test "PPA" to evaluate the performance of "NSLP/ WSM/ Based drilling fluid System. EMEC Bridging **Particles** Optimization Tool (BPOT) are computer models developed to simulate the wellbore strengthenin g process and design the appropriate WSM blend based on well design, basic rock properties and in-situ earth stresses.

The, designing proper particle-size distribution is the first step towards formulating a minimally invading, nondamaging fluid.

Based on the permeability of depleted sands, the Software Model "BPOT" used to determine the correct selection and "PSD" for creating a thin and integrated filter cake, minimizing against formation damage; eliminates the induced lost circulation and differential sticking problems when the mud overbalance is expected to be $> \pm$ 3000 psi.

Wellbore Strengthening Software Models Drilling Solutions (BPOT)

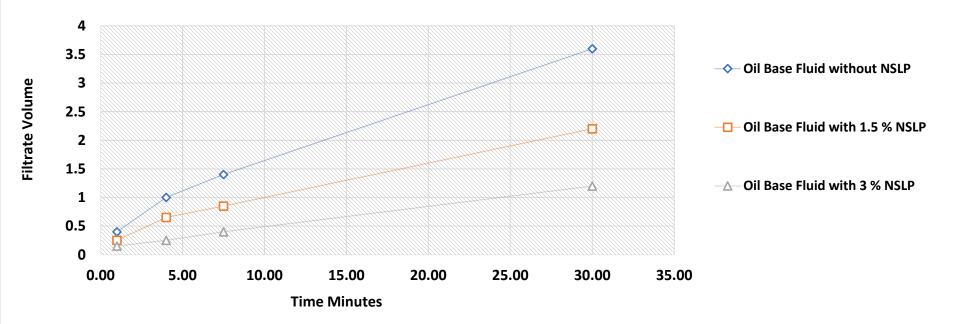
Pilot Test Study & (PPA) Test Procedures & Testing of NSLP / WSM / 12.0 ppg Oil Base Formulated Mud System Fully

- Based on data provided by the Operator; an extensive laboratory tests were conducted in Burgan Lab in Kuwait on Oil Based Drilling Fluids to meet the API criteria:
 - To evaluate the rheological and filtration Properties and
 - To come up with the optimum PSD required in the Formulation to obtain the lowest spurt loss and the lowest total filtrate
- To pilot test the formulation of 12.0 ppg (over balance > 2000-3000 psi) OBM 80/20 OWR,
- To study the compatibility of the "NSLP" with OBM system
 - To produce the Optimum NSLP/WSM Composite required to obtain the lowest spurt and total Filtrate Loss.
- Tests were conducted at differential pressure values up to 3200 psi and temperatures up to 330 °F
- The following recipe to pilot test and prepare one bbl of 12.0 ppg OBM With and Without "Nano Seal Liquid Polymer "NSLP".

12.0 PPG OBM Mud Parameter Test Results

No.	Product	Function	Unit	Conc.				Results	
1	Base Oil	Base Fluid	gpb	19.09	MUD PARAMETER	UNIT	OBM Blank Sample	OBM Sample	OBM Sample
2	Emulsifying agent	Primary Emulsifier	gpb	1.5 - 2.0			Without "NSLP"	With 1.5% NSLP	With 3 % NSLP
3	Wetting Agent	Wetting Agent	gpb	1.5 - 2.0	Mud Weight @ 70	lb/gal	12.0	12.0	12.0
4	Viscosifier	Viscosifier	ppb	4.0 - 7.0	°F	_			
5	Water	Water phase	gpb	5.66	Rheology test @ 150 °	Ϋ́F	r	r	
6	Calcium Chloride	Salinity Control	ppb	12.0 - 14.0	PV	сР	32	33	38
7	Lime	Alkalinity Control	ppb	5.0-8.0	YP	lb/100 ft ²	15	18	20
8	HP-HT Fluid Loss Reducer	Fluid loss reducer	ppb	4.0 - 6.0	Gel	lb/100 ft²	9.0 /14.0	12.0 / 16.0	13.0 / 19.0
9	Shale Stabilizer	Shale Stabilizer	nnh	4.0	Electrical Stability	Beak Volt	920	965	985
9	Shale Stabilizer	Shale Stabilizer	ppb	4.0	OWR		80/20	80/20	80/20
10	Carbon Derivative	Bridging Materials	ppb	5.0	HPHT fluid loss @ 300°F	ml/30min	5.2	2.4	1.2
11	Lube-OM	Lubricant	gpb	0.63		Microns			
12	Sized WSM	Bridging Materials	ppb	15.0	PSD (D50) μ	(μ)	17.43 μ	17.87 μ	23.01 μ
13	Barite	Weighting Material	ppb	495	Total PPT Filtrate Vol. @ 30 Min	ml/30min	3.6	2.2	1.20

0.8 mm


 Permeability plugging test was performed at 300 °F and 2500 psi differential pressure With 40 μm ceramic filter disks. The result of PPA fluid loss test for each NSLP/WSM/OBM Composite Samples were obtained as follows:-

	WSM Distribution (20 ppb)						
Parameter	OBM Without "NSLP"	OBM With 1.5 % "NSLP"	OBM With 3 % "NSLP"				
WSM 25 μm		7.5 ppb					
WSM 40 μm		4.5 ppb					
WSM 150 μm		3.0 ppb					
Carbon Derivative		5.0 ppb					
D		PPA Test Result					
Parameters	Oil Based Fluid Without NSLP	Oil Based Fluid With 1.5 % NSLP	Oil Based Fluid With 3 % NSLP				
Spurt loss; @ 30 sec ml	0.40	0.25	0.15				
Filtrate @ 7.5 Min	1.4	0.85	0.40				
Total PPT Filtrate Vol. @ 30 Min	3.6	2.2	1.20				
Mud Cake Pics after PPT Test @ 300°F and 2500 Psi Differential Pressure With 40 µm ceramic filter disks							

1.2 mm

NSLP/WSM/OBM PPA Lab Test Results

PPA at 300 °F and 2500 psi & 40 μm Ceramic Disks

...

The result of HP-HT fluid loss test for each NSLP/WSM/12.0 ppg OBM Samples were obtained With and without "NSLP" as follows:-:-

Parameter		WSM Distribution (20 ppb)						
	OBM Without "NSLP"	OBM With 1.5 % "NSLP"	OBM With 3 % "NSLP"					
WSM 25µm		7.5 ppb						
WSM 40µm		4.5 ppb						
WSM 150µm		3.0 ppb						
Carbon Derivative		5.0 PPB						
Parameter	HT-HP OBM Lab Test Result @ 300 0F 500 psi Differential Pressure after 16 Hrs hot rolling							
	Base Fluid Without NSLP	Base Fluid With 1.5 % NSLP	Base Fluid With 3.0 % NSLP					
Filtrate@7.5 Min	2.2 ml	1.4 ml	1.2 ml					
Filtrate @ 30 Min	6.80 ml	2.8 ml	1.4 ml					
Mud Cake Pictures after HT - HP Lab Test @ 300 °F and 500 Psi Differential Pressure	4.0	1.5 mm	1.2 mm					

0.028

0.00

0.056

MASTERSIZER

Result Analysis Report

:::	Sample Name: NSLP	SOP Name: NSLP	Measured: Sunday, April 25, 2021 1:04:21 PM		
	Sample Source & type: Supplier	Measured by: Wael	Analysed: Sunday, April 25, 2021 1:04:22 PM		
	Sample bulk lot ref:	Result Source: Measurement			
	Particle Name: Latex	Accessory Name: Hydro 2000MU (A)	Analysis model: General purpose	Sensitivity: Enhanced	
	Particle RI:	Absorption:	Size range:	Obscuration:	
	1.590 Dispersant Name:	0 Dispersant RI:	0.100 to 1000.000 um Weighted Residual:	16.29 % Result Emulation:	
	Water	1.000	12.499 %	Off	
	Concentration: 0.0037 %Vol	Span : 0.670	Uniformity: 0.208	Result units: Volume	
	Specific Surface Area: 33.7 m²/g	Surface Weighted Mean D[3,2]: 0.178 um	Vol. Weighted Mean D[4,3]: 0.189 um		
	d(0.1): 0.135 um	d(0.5): 0.179 u	um d(0.9):	: 0.255 um	
		Particle Size Distribu	ition	110	
-	25		A	100	
-			\wedge	- 90	
-	20	+		- 80	
	(%		Λ	- 70	
	(%) 15 10			- 60	
	lun		/ \	- 50	
	≥ 10			- 40	
	5			- 30	
				- 20	
	5		N	10	
				- 10	
	8.01	0.1		10 1 0	
	8.01	Particle Size (µm)		10	
als	8.01	Particle Size (µm)) 27e (µm) Vol Under % 0.142 14.08 0.233 04.85	0	

0.112

0.00

0.224

80.31

0.448

0.893

1.000

100.00

utilizing Laser Diffraction Analyzer model MALVERN MASTERSIZER HYDRO 2000 MU.

(PSD) of "NSLP" was measured

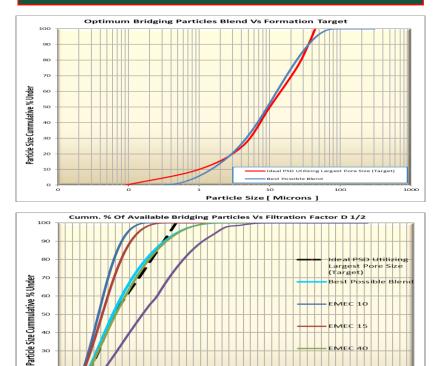
The Particle Size Distribution

- The obtained PSD showed that
 Particles Median Size
- D50 is 179 Nanometer "nm"
- D10 is 135 nm , D90 is 255 nm.

EMEC

PSD of NSLP

The Egyptian Mud Engineering and Chemicals



MEC 80

Conclusion:

- The PPA Lab Test results show the excellent performance of the NSLP/WSM/Based Fluids System. The Ceramic disc recovered from the PPA run with the optimum mud formulation showed a very thin, slick and impenetrable filter cake.
- Significantly, NSLP enhances filter cake texture and improves its toughness for sealing off permeable depleted formation without the excessive build up of cake thickness.
- PSD of the selected WSM blend showed the best results in terms of spurt loss and total fluid loss.
- NSLP/WSM/OBM Fluids System was effective in mitigating differential stuck pipe tendency while managing a high Mud overbalance > 3000 psi

PSD analysis of the WSM blends

Square Root Particle Size Microns ^ 0.5 (Filtration Factor)18

20

10

0

Return Permeability & Reservoir Damage

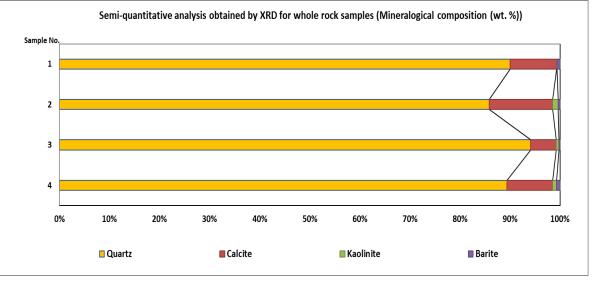
NSLP/WSM/OBM was designed and formulated as per the following recipe:

Mixing Ordered	OBM Product	UNIT	ppb
01	Base Oil	bbl	0.597
02	Emulsifying agent	Primary Emulsifier	0.5 – 0.85
03	Wetting Agent	Wetting Agent	0.55 – 0.95
04	Emulsifying agent	Secondary Emulsifier	0.4 - 0.75
05	Viscosifier	Viscosifier	5.0 - 8.0
06	HP-HT F.L. Reducer	Fluid loss reducer	6.0 - 8.00
07	Lime	Alkalinity Control	10.00
08	Water	bbl	0.161
09	Calcium Chloride	Salinity Control	22.46
10	Carbon Derivative	Bridging Materials	5.00
11	StrataHeal	Bridging Materials	5.00
12	Sized Marble " 25µ"	Bridging Materials	10.00
13	Sized Marble " 40µ"	Bridging Materials	10.00
14	Sized Marble " 150µ"	Bridging Materials	10.00
15	E. Carb " XF"	Weighting Agents	53.00
16	"NSLP"	gpb	0.630

NSLP/WSM/OBM Parameters as per lab test results for the above formula as follow:

Results		
@ 150 °F	Unit	AHR
M. Wt.	lb/gal	9.5
PV	сР	25
YP	lb/100ft ²	20
LSYP	lb/100ft ²	11
Gel 10"/10'	lb/100ft ²	15/20
E.S	Peak Volt	880
HP-HT @ 300 F°	ml	0.6
O/W ratio	-	80 / 20
Excess Lime	ppb	2.33
CaCl2	%	24.8

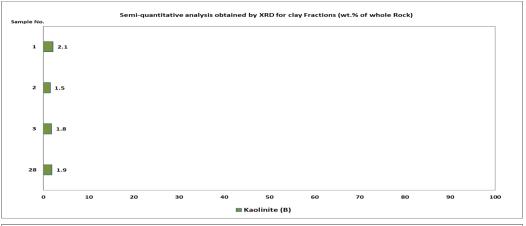
The permeability to oil was established at Swi and the final oil permeability was measured as follow;

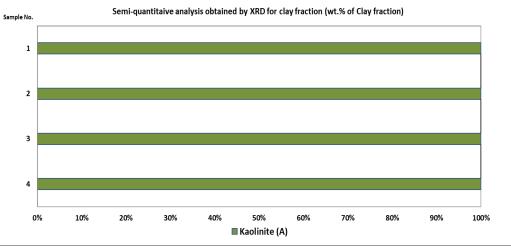

Effect of adding NSLP/WSM/OBM on Reservoir Damage; O The following study presents the results of return permeability, XRD and SEM before and after OBM flooding. O All analyses were undertaken at the request of Client's. Aim Of The Study; O The main objective of this study was to measure the change in the rock plug sample permeability before and after flooding with the NSLP/WSM/OBM, O Core analysis lab tests were performed on four (4) core plug samples received from the Client's. O Return Permeability Test Results; The permeability to oil was established at Swi and the final oil permeability was measured. O The return permeability as % change in base permeability was measured to be from 83 - 88% with NSLP/OBM and Up to 91% With NSLP/HPWMM.

Sample No.	Depth (ft)	Fm.	Porosity (%)	Grain Density (g/cc)	Ka (mD)	Swi (%)	Ko@Swi Before OBM Flooding (mD)	Ko@Swi After OBM Flooding (mD)	Return Permeability (% Change in Base Permeability)
1		Sand	24.3	2.63	900	17	372	312 (16%)	<mark>84%</mark>
	F/14900	Sand	26.9	2.64	930	19	278	245 (12%)	<mark>88%</mark>
2	To/15000	Sand	30.6	2.65	491	28	151	129 (15%)	<mark>85%</mark>
3	Sand								
4		Sand	35.6	2.64	5408	15	942	783 (17%)	<mark>83%</mark>

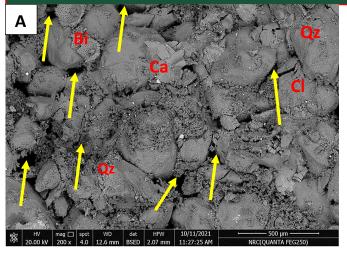
SEM Analysis:						Company: EMEC	Well: GOS	
Sample						Total	Depth (ft): 14955	Photo Type: SEM
No.	Depth	Quartz	Calcite	Kaolinite	Barite	(wt.%)	Sample Type: Core	Sample No.: 2
2	14955	85.5	12.6	1.1	0.4	100	Textural Characteristics :	
							Grain Size: Fine- to medium-grained sa	nd
SEM Analysis:						Sorting : Moderately to well sorted		
Scar	nning E	Electro	n Micro	oscopy (SEM) a	nalysis	Cementation: Poorly cemented	
was	carrie	d out	on co	re samp	oles. Fo	or SEM	Detrital Grains: Dominant amounts of detrital quartz grains	
Befo				SLP/WS			(Qz) with small amount of barite (Ba) (most probably came	
							from drilling fluid).	
Floo	ding, S	SEM de	scriptic	on includ	les a su	immary	Detrital Clays: Traces of detrital kaolinite between and/o	
of p	ore g	eometr	y and	the cor	npositio	on and	coating the detrital quartz grains.	
mor	oholog	y of	the	main p	oore-oc	cluding	Authigenic Cement: Fine-grained calcit	e crystals (Ca) between
mine	erals; ii	n additi	on, ead	ch sampl	e is illu	strated	the detrital quartz grains	
by p	hotomi	crogra	phs as	follow :			Pore System: Interparticle porosity (yellow arrows) with p	
							size ranges in diameter between 5 to 5	0 microns.

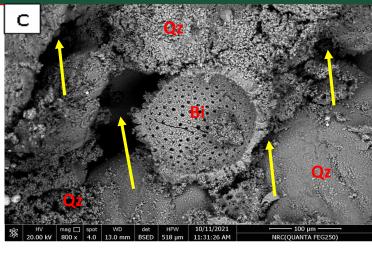
X-Ray Diffraction (XRD) Analysis: XRD analysis of whole rock (WR) and clay fraction (CF) will apply to a sample. The sample preparation and analytical procedures described in Appendix A. The results of whole rock and clay fraction XRD analyses are summarized in The Following Tables and Figures;

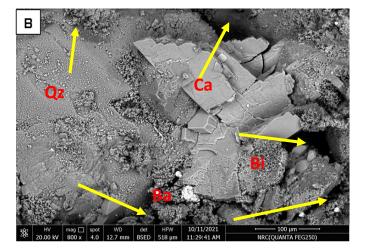


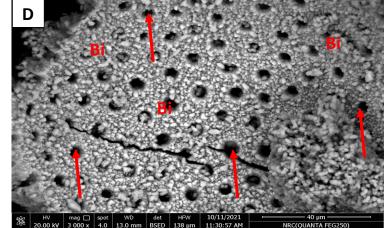

Well Name	Sam ple No.	Depth (ft)	Quartz	Calcite	Kaoli nite	Barite	Total (wt.%)
	1	14954	88.3	9.1	0.1	0.6	100
GOS	2	14955	85.5	12.6	1.1	0.4	100
Field	3	14967	93.0	5.0	0.6	0.2	100
	4	14968	88.5	9.0	0.8	0.7	100

Semi-quantitative analysis obtained by XRD for clay fractions

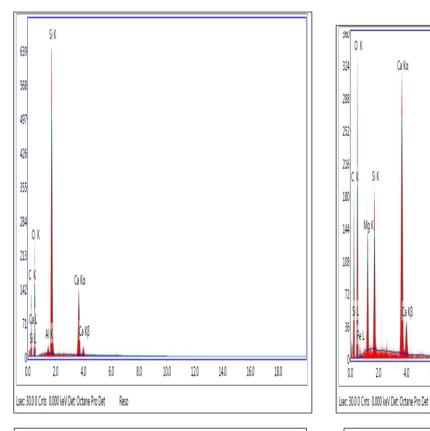



Well Name	Sample No.	Depth (ft)	Kaolinite (A)	Kaolinite (B)
	1		100	2.1
GOS Field	2	F/14900 -	100	1.5
	3	To/15000	100	1.8
	4		100	1.9





SEM Analysis **Before** NSLP/WSM/OBM Core Flooding:



SEM micrographs photo of the sample.

- A) General overview of the sand shows the major components, detrital quartz (Qz), sparry calcite (Ca), Bioclastic (Bi) pores (yellow arrows) and traces of detrital clays (Cl),
- B) B) close up for the sparry calcite (Ca),
- C) C) close up for the Bioclastic (Bi) and
- D) Close up for the micropores within the Bioclastic (Yellow arrows).

jbU OK

324

288

252

216

180

Sik

Mak 144

CaKa

Figure (1): EDAX analysis of quartz shows the Si peak and its elemental analysis

Figure (2): EDAX analysis of calcite bioclast shows the Ca peak and its elemental analysis

14.0

12.0

16.0

180

Fe Ka

Fe KB

Reso

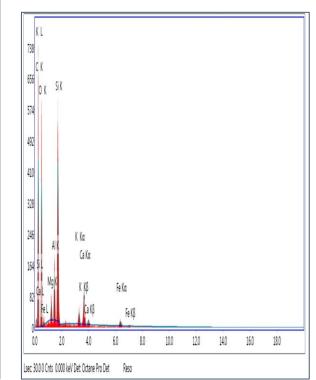
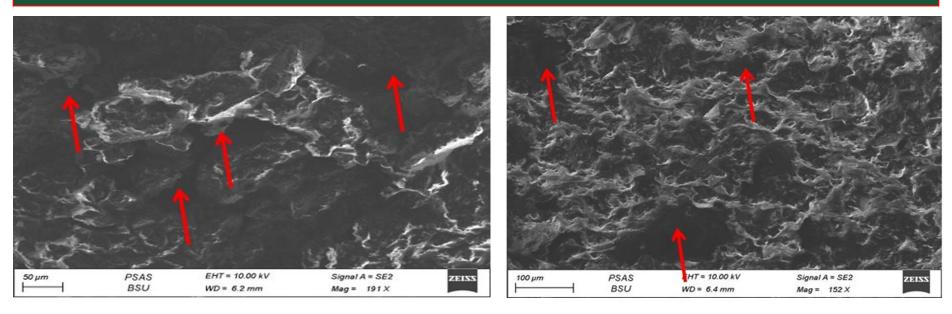
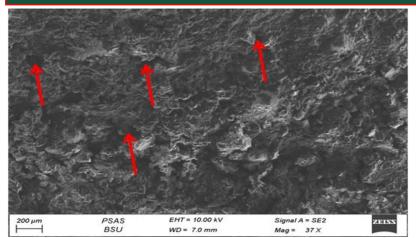
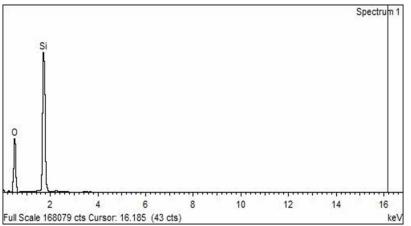
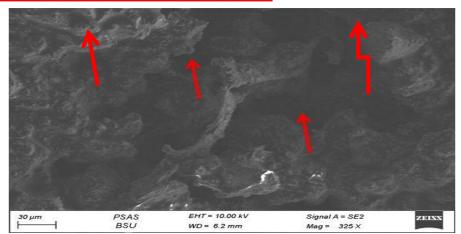



Figure (3): EDAX analysis shows the occurrence of (AI) peak indicating the occurrence of detrital clays


SEM Analysis After NSLP/WSM/OBM Core Flooding:


SEM observations of the four samples After flooding treatment indicate the occurrence of pores as shown in the following SEM photos. Therefore, there is no show of sever mechanical damage evidence on the formation including its pores system and permeability as a result of flooding and it is shown in the Return Permeability results . Red arrows on the photos below refer to the pores.




SEM Analysis & EDAX analysis of quartz grains for sample 2 After NSLP/WSM/OBM Core Flooding

Field Evaluation Case 1, Well # 1& Well # 2

Well Name	Well # 1	Well Name	Well # 2		
Interval Size inch	6" (ST1)	Interval Size inch	6" (ST2)		
Interval Depth ft	12265.0 – 14,605.0	Interval Depth ft	10370 - 13850.0		
Footage ft	2340	Footage ft	3480.0		
Fluid Type	NSLP/WSM/OBM	Fluid Type	NSLP/WSM/OBM		
Well # 1& Well # 2 Drilling Challenges;					

Historically, The operator experienced the following challenges with the offset drilled wells:

- A high pressured / Low-pressured Sands, Wellbore instability issues, High Gas readings, and Finally Seepage or Severe Lost of circulation.
- Offset wells data indicated that a higher fluid density of +/- 10.8 ppg is required for safe drilling High Pressure Shale of Lower Rudies Fm mean while a fluid density of +/- 9.5 ppg to drill out the depleted reservoir Sand Fm.
- So, in these offset wells the planning team design to isolate high pressure zone with 7" casing and drill
 6" section through the depleted sands. This solution costs the operator significant time and money .

Well # 1& Well # 2 Drilling Solutions

- Effective NSLP/WSM Composite incorporated in the design of Oil-Based Fluid Formulation to form continues and integrate mud cake with low permeability and low porosity.
- Engineering wellbore strengthening treatment specifically selected for drilling this type of sand to enhance its formation strengthening and to give a chance for Drilling with mud overbalance > +/-2800 psi, safely, and to Combine the two sections in only one section.
- As NSLP/WSM Composite minimizes the pore pressure transmission and improve wellbore stability at relatively lower fluid density (< 10 ppg) so, the plan was set to included the new NSLP/WSM composite to lower the risk of lost circulation while drilling depleted sands with that higher mud weight of ≥ 10.0 ppg.
- Based on Physical Rock Properties, The software model Bridging Particles Optimization Tool (BPOT) used to determine the correct selection and particle size distribution PSD of the WSM for creating a thin and integrated filter cake.

Execution:

Well # 1 Sections Data													
	Interval Size (in)	Fluid Type	Fluid Type Top MD Bottom MD (ft) (ft)										
Well #1	6.0 (ST-2)	NSLP/WSM/OBM	12265.0	14,605.0	4.5 (in) Liner								
Well #1	6.0 (ST-2)	Brine	14,605.0	14,605.0	11,935.0-14,605								

	Well # 2 Sections Data														
Well Section	Interval Size (in)	Fluid Type	Top MD (ft)	Bottom MD (ft)	Casing Set (ft)										
Well #2	6.0 (ST-2)	NSLP/WSM/OBM	10,370.0	13,850.0	5" Liner										
Well # 2	6.0 (ST-2)	NaCI/KCI Brine	13,850.0	13,850.0	10,214.0 - 13,850.0										

WSM Treatment	Concentration		Fluid Parameter	Result
NSLP (D50 0.179 μm)	0.84 gal/bbl	A STORE STOR	HP-HT Fluid loss	1.0 ml/30 min
Graphite	5.0 lb/bbl	0.8 mm	at 300°F	1.0 mi/30 min
Dynared	5.0 lb/bbl			
Sized Marble 10 µ	3.0 lb/bbl		PPA Spurt fluid loss	0.25
Sized Marble 25 µ	15.0 lb/bbl	Company and Company	PPA fluid loss at 320°F,	
Sized Marble 100 μ	7.0 lb/bbl		20µ and 3500 psi	2.6 ml/30 min

Case 1, Well # 1 & Well # 2 : Execution

WELL # 2

TOL @ 2894'

<u>13 3/8" @</u> 2703'

7" TOSL@

9 5/8" @ 8472' <

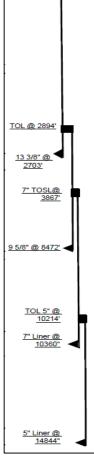
TOL 5" @

7" Liner @

5" Liner @

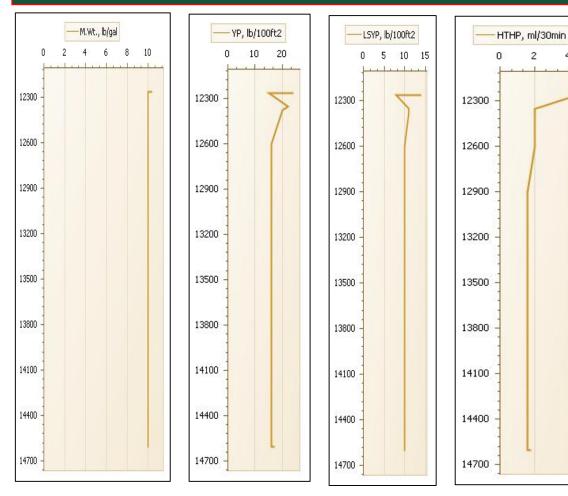
13850'

10214'

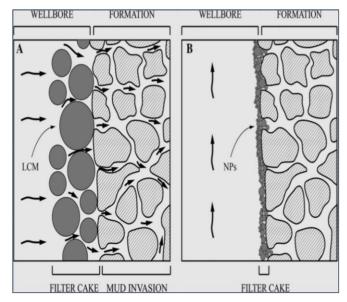

10360"

3867

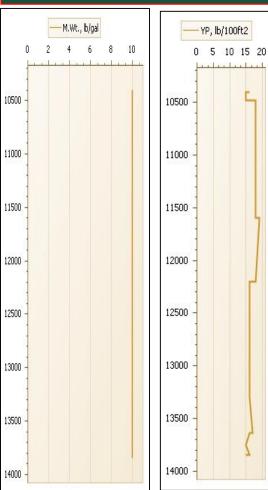
- In second well, the 6" hole side track Production Zone section drilled from 10370 - 13850.0 TD MD with maximum angle of > 55°.
- The pore pressure of depleted reservoir was recorded to be about 3700 PSI.
- the depleted sand was drilled safely with using NSLP/WSM Composite 10.0 ppg Oil Based Fluids System and differential pressure +/- 2000 PSI,
- The hole showed a stable condition till run 5" liner and cemented successfully without down hole losses.

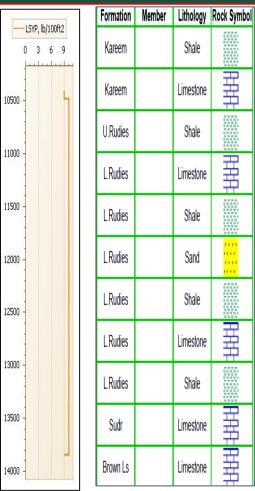

WELL # 1

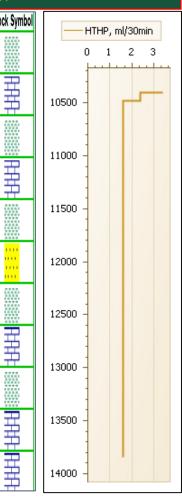
- In first well, the operator drilled 6" sidetrack Production Zone section from 12265.0 – 14,605.0 TD ft MD with maximum angle of 40.00°.
- Pressure measurements taken indicated the pore pressure of the depleted Matulla Sand was +/- 2600 PSI.
- Despite the sub-normal pressure, the depleted sand was drilled safely with 10.0 ppg using NSLP/WSM Composite Oil Based Fluids System and with differential pressure +/- 3000 PSI,
- Also, the hole showed stable condition during tripping, logging, and during running 4 ¹/₂" liner smoothly to bottom without down hole losses..



Well # 1 / GOS - Daily Drilling Fluid Properties - Execution




Formation	Member	Lithology	Rock Symbol
Rudies		Shale	5355 53555
Nukul		Anhydrite	
Thebes		Limestone	
Esna		Shale	
Sudr		Limestone	調
Brown Ls		Limestone	
Matulla		Sand	<u></u>
Wata		Sand	



Well # 2 / GOS - Daily Drilling Fluid Properties - Execution

Field Evaluation Case 1, Well # 1 & Well # 2 - Highlights / Success Points

Depleted sands safely drilled with > 2800 psi over-balance without losses, sticking tendency or wellbore stability issues using the new approach NSLP/WSM Oil Based Fluids System.

The operator drilled many wells through high-pressure zone and sub-pressure depleted sand formation with minimum to Zero (NPT). Well condition/homogenous fluids prior tripping out.

No differential sticking during Drilling Operation. Liner, was run smoothly in both wells to section TD without obstructions indicating stable wellbore.

This Solution saves operator significant time and money when compared to problematic offset wells.

Well # 1 & Well # 2 completed and showing an increase in the production rate compared to the gross rate before start the sidetrack operation indicating no formation damage occurred during drilling operation using the new NSLP/WSM Based OBM Fluid System.

Closing Remarks / Conclusion

*

The newly designed Nanoparticle Based Drilling Fluids Technology incorporated in the fluid system formulation aided by (BPOT) customized to solve such drilling challenges and engineered to control fluid invasion of drilling fluid into reservoir.

"BPOT" Optimizes "PSD" of reservoir drilling fluids, improves leak-off control, and minimizes formation damage from solids invasion thereby increasing well productivity.

 \mathbf{O}

"NSLP" / "WSM" incorporated in OBM Formulation Capable of forming a continues and integrate mud cake with low permeability and low porosity.

This Innovative Solution saves operator significant time and money when compared to problematic offset wells

EMEC

Closing Remarks / Conclusion

The plugging efficiency was evaluated, and lab tested experimentally using the "PPA" to measure the filtration volume.

The results showed that NSLP/WSM/Based Fluids System provide a combination of chemical inhibition and micro fracture sealing capability against a low permeable Sand and Shale Fm.

Also, it Optimizes wellbore stability in a variety of drilling conditions including, deep drilling well applications, depleted or poorly consolidated formations, interbedded formations, and mechanically weak formations.

The "NSLP" technology Equally effective in Water, Oil, or Synthetic-Based Drilling Fluid Systems maintaining a good well bore hole stability and preventing equipment problems, such as differential sticking, seepage losses and slow (ROP) due to bit balling,

EMEC The Egyptian Mud Engineering and Chemic **Closing Remarks / Conclusion**

Nanoparticle-Based Drilling Fluids system is suitable for use in all sections of the well including the reservoir and it demonstrated to be a Non-Damaging as seen from the return permeability Lab Test done in independent 3rd party showing that the Return Permeability percentage Changed between 83 up to 91 %.

Taking the new Nanoparticle Based Drilling Fluids to the field, the Planning & Drilling Team drilled many successful wells in the offshore GOS, WD Egypt where the offset wells in these area experienced differential sticking due to depleted sands with mechanical shale sloughing, leading to wellbore instability.

Successfully drilling many wells in GOS, WD, Egypt and in Kuwait penetrating through the production Zone, (high-pressure zone and subpressure depleted sand formation) with Minimum to Zero (NPT) using this innovative solution.

EMEC The Egyptian Mud Engineering and Ch

Closing Remarks / Conclusion

The sealing membrane resulted in NSLP/WSM/Based Fluids System is easily removed, restoring almost instantly the original rock permeability which clearly proved in our Cases shown in this presentation completed producer as well showing an increase in the production rate without costly and challenging remedial treatments indicating no formation damage occurred during drilling operation using the new system.

When production is initiated, the inflow of the well lifts off the thin external filter cake with minimal differential pressure, eliminating the need for acid stimulation washes.

Drilling operations reported no differential sticking, or wellbore instability issues compared to very challenging situations for field offset wells targeting the same Formations in GOS or in W/D even at highly mud overbalance > 3000 psi.

											1																			
										1	1										1									1
										1	1	1	1	I	1	1			1	1										1
															1															1
							I		1	1		1	1	I	1	1				I	1									1
																														I
		I	I	I	1						1	1																		11
														I																I
												ļ																		1
																														1
																														"
																														"
																						!								11 11
																		'												
																		1												
																													•	
																				1								1		
																				i										
		i	1	1	1	1			i	1	1							1	1	1	1									
		1	1		1	1				1		1																		
		1	1	1	1	1			1	1	1	1	1	ı							I			•						
		1	I	I							1	1	I								I									
		1	ļ	1	1	I	1		1	1	1	1	1	I	1	1			1	1										
		1		I	I					I	1	1	1	I	I					I	I									
								1																						
								1																						
								1												'										
								1																						
								1																						
								1																						
								1																						
		1	I		1	1				1	1	1	1		1	1														
		1		I	1																									
			1		I	i																								
				I																										
																					ļ									
											ļ					1														
													ļ			1														
																						1								
															1	1														

The Egyptian Mud Engineering and Chemicals Co.

NSLP/WSM/Based Fluids System proves its economic value, as it can be used to drill out Hi-Pressure – Low Pressure Zone, eliminating a possible additional casing string and managed to decrease the drilling section time (NPT) which reflected on overall section drilling cost.

Now this innovative solution became an integral for most of the operators' well planner in Egypt and was selected to drill out such challenged complex wells in the following upcoming drilling operation in both W/D and GOS - Egypt

Acknowledgements

The authors wish to thank GPC for approval to introduce this Presentation in this Workshop as well as colleagues who participated in different stages of this project.

Additionally, the authors and colleagues would like to thank EMEC Management for their support to present this project

gyptian Mud Engineering and Chemicals Co

Questions?

Biography

Youssry Abdelaziz Eladly is a Technical, Project Manager at EMEC with more than 30 years of experience. After obtaining his B.Sc. in Chemistry from Ain Shams University in 1981, he started working in GPC's Lab and Fields as a Lab and Mud Chemist. In 1988 he moved to EMEC where he worked as a Mud Engineer then Mud Supervisor. In 1995 he promoted to be a Base Manager in various region Inside and Outside Egypt including Syria and Saudi Arabia. In 2008, till now he currently worked as Technical, Project Manager with GUPCO/PB/DRAGON and with Petrosannan Supervising operations in Gulf of Suez, Red sea, and Western Desert regions. He is also known for training lots of engineers as well establishing successful collaborations with junior mud academic institutions in Egypt. Recently three SPE Papers have been published in cooperation with GUPCO&PETROSANNAN, Youssry was the main author of these papers.

1000 11